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XV. Researches on the Theory of Vortex Rings.—Part I1.
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THE present communication forms a continuation of some researches the first part of
which was published in Part I. of the Transactions for 1884.* In that paper was
considered the case of a circular hollow with cyclic motion round it.
following pages the more general case is investigated where the core is of different
density from that of the surrounding fluid, has a hollow inside it, and circulations
additional to that due to the rotational filaments actually present. The investigation

# References to this are in square brackets, thus [I. 5].
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is not merely one of mathematical interest, for the vortex atom theory of matter
has—so far as it has yet been developed—shown such claims on our consideration
that anything throwing light on it will be of value. The supposition of a dense core
may possibly be necessary to account for the different masses of the various elements.

As soon as the existence of a core is postulated the ring at once becomes more
complex, depending on the density (or even the arrangement of density) of its core,
on its vorticity, and on the presence or absence of additional circulations. In what
follows the vorticity has been taken uniform; this not only greatly simplifies the
mathematical methods, but is also the case we should naturally choose first to investi-
gate. In the general investigation the density is taken to be different from that of
the surrounding fluid. The ring is supposed hollow, with an additional circulation
round it, and another additional circulation round the outer boundary of the core. It
is evident that the presence of the former circulation necessitates the perpetual
existence of the hollow. It is shown that the presence of the latter circulation is
necessary to render the ring stable when its density is greater than that of the rest
of the fluid.

As in the former paper, the investigation is divided into three sections. The first
is preliminary and deals with the necessary functions and their approximate values.
The second is devoted to the consideration of the state of steady motion. Here the
approximations are carried in the beginning so far as to include the second order of
infinitesimals, but this necessitates in certain parts approximation to the fourth order.
It has been carried to this order for future work ; the reader however may, so far as
the results of the present communication are concerned, without any loss of intelligi-
bility, pass over the parts giving the calculation of the highest orders. The third
section discusses the question of fluted vibrations, of pulsations, and of stability.

When the motion is steady the sectional centre * of the hollow lies outside that of
the core. In general (§9) if C, is its position (with given outside boundary) when the
inner additional circulation is very large, and C, when the same quantity is zero, C, is
outside of C, and the position of C when the additional circulation is general, is the
centre of gravity of masses proportional to the added circulation at C, and the circula-
tion due to the core itself at C,,  'When the hollow is just zero, the distance of C, from
the sectional centre of the core bears to the sectional radius the ratio 57/8a where r
is the sectional radius, and & the radius of the ring. This, therefore, is the point where
the hollow begins to form when the energy is sufficiently increased. If with the same
outer boundary the mass of the core be lessened (or size of hollow increased) C, moves
in and ultimately coincides with the centre of the outer section. The position of C,
alters in the same manner, only in this case the hollow can never vanish.

If m be the volume of the core, IT the pressure at an infinite distance, u the circula-
tion when there are no additional ones, and d, d’ the densities, then (§10) a hollow will

* By sectional centre is meant the centre of the cross-section ; by apertural centre is meant the centre
of the aperture.
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begin to form when the radius of the ring is 4mII/u*(d-+4d’). So loug as the core is
simply continuous the volume is constant, and therefore the sectional radius varies
inversely as the square root of the radius of the ring. When there is no core it was
shown in the former paper that the sectional radius of the hollow remained constant.
In the general case, after a hollow is formed the sectional radius of the core changes
more slowly, and the additional circulations add to this tendency. The outer section
always decreases as the aperture increases, but when the hollow becomes large this
decrease is very small, and the sectional radius of the core remains almost constant.
The sectional radius of the hollow also increases with the aperture. In cases where a
hollow begins to form the sectional radius at that time is equal to /140 times its
ultimate value ; o being the density of the core with respect to the surrounding fluid.

The expansibility of the ring due to the presence of a hollow has a marked effect
on the variation of the velocity of translation with increasing aperture, the tendency
being to make the variation smaller. v

With an internal additional circulation the ring will possess internal energy com-
parable with that of the external fluid. It will, however, decrease as the whole energy
is increased. This is of importance for the general theory of gases.
~ The fluted vibrations in general consist of two sets of two, travelling in opposite
directions round the core, the modes being defined by the number of flutings. For a
single continuous core there are two sets; for a hollow core without an internal
additional circulation, there are three sets together with a standing wave (where the
time of vibration is infinite); for two additional circulations we get four sets, the
times being determined by a biquadratic, which I have not succeeded in solving in
general terms. When there is no rotational core the motion is always stable. "When
there is a simple continuous core, whose density referred to the outer fluid is o, and
no additional inner circulation, the ratio of the outer circulation to that due to the

core must be > M g(2+o-)/(1+o-)}. When there is no additional circulation, or

no slip over the core, the ring cannot be always stable unless o<./2. These con-
ditions hold until a hollow has formed. When there is a hollow and no internal
additional circulation, the simple ring usually considered is still stable. But if the
core is denser than the surrounding fluid, it is always stable only when the outer
additional circulation is larger than a certain critical value depending on the densities
and the circulations. If it is less than this critical value the ring becomes unstable at
some point as the aperture increases. When the density of the core is very large, of
the order 107 (p large) this critical value is /% 107 times the circulation of the core
itself. .

The condition of stability when there is an inner additional circulation depends on
the reality of the roots of a biquadratic equation, and the general conditions are not
discussed, but the same property of the outer additional circulation preserving the
stability clearly holds good. The motion is always stable for pulsations.

S A2
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These conditions of stability only reach so far as fluted vibrations and pulsations
are concerned. The question of the stability for twisted and beaded vibrations is not
considered. J. J. THoMsoN has proved that simply continuous rings of the same
density as the rest of the fluid are stable for these kinds of vibrations. The general
case yet remains to be investigated.

Some of the simpler results are here collected for the sake of reference.

(distance of C, from sectional centre)/r= ‘ﬁ (l—z+log1/x) . . (38)
(distance of C, from sectional centre)/a"—*; {—g-—%?—l—% log 1 /oc} . (38)
ar(1—x)= 5@
2 ne i e l—z—azlogl log 1
,% ptp=p’p— ()P + 4 2u 2W +2p,p OT:E' .. (43)
o 2 .
- (1+p)=(1 —w)p+(1+w)—-1:3 logl/z. . . . . . (42)

The general formula for the velocity of translation is given in eq. (44), the following
are cases :—

No core : » _

—F (1081

V—ml(log?n 2) P /1
Continuous core

— (log 2 n L 2

V—47m<10g¢+8)+327m;;,2p N (1))
Ordinary ring

—H 8a__

V—47m<10 r 4‘>

For hollow with no added circulations

_r 6402 1+m2 } 48
V_87m{logw, - logl/ac T 1))

where
p’ = circulation due to vortex filaments
p, = added inner circulation
o, = whole outer circulation
p = ratio of density of outside fluid to density of core
m = volume of core
r = outer sectional radius
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r’ = inner sectional radius

x = (/r)?

r, = value of r when the aperture is infinite

o = radius of ring

o, = radius of ring when the hollow begins to form
7, = sectional radius ,, ), ) )

V = velocity of translation

Section I.— Preliminary.

1. The motion we are about to consider is one of steady motion in a fluid, part of
which is rotational. If ¢ denote the stream function, w the angular rotation, and p, 2,
the cylindrical co-ordinates of a point, then

o bw 1oy
o2 T op*  p Op =2wp

Now when the motion is steady the rotations are so arranged that the vorticity is a
function of the stream line or 2w/p=f (). For steady motion then we have

o* o? 16
S =Y )

Before, therefore, it is possible to discuss the properties of any vortex ring it is
necessary to know its vorticity. The case considered in the following pages is that
where the vorticity is constant. The methods developed will however apply to any
cases where the motion is arranged in anchor-ring shells, the vorticity in any shell
being constant. Here then f{i)is a constant =A (say). A particular integral is then
at once obtained, viz., y=3Ap?, and the general solution becomes [I. §1].

Y= éAp‘*-I-\/ ﬁﬁﬁﬁﬁ > (A, R,+B,T,) cos (nv+a,)

Since the translatory motion is uniform the problem may be reduced to one of
steady motion by impressing on every point a velocity equal and opposite to V, the
velocity of translation. The stream function for the fluid outside the core will then
be of the form

%:'—%sz-'—\/(} 2 A/Rycosmv . . . . . . . (1)
whilst for the portion of fluid constituting the core it is of the form

Y =1Ap* +\/ E(AR,,+B,,T)coqn'v e e s (2)
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We shall assume-—an assumption to be justified by the result—that
(Aan'l'BnTn)/(An—]Rﬂ—l + Bn—lTn—l)

is of order k, or of the first order of small quantities by which the approximation
proceeds. In this case A,/A,_; is of order 4% and B,/B,_; of zero order, in other
words A,/A  of order £, and B, of the same order as By, but there is no means at
present of determining the order of A, or A’j with reference to B,.

2. The most general case considered is where the core is hollow, and has therefore
an inner free surface, and an outer surface common with the fluid moving irrotation-
ally. The cross sections of these surfaces will approximate to circles. Take the
critical circle (radius a) of our curvilinear coordinates to be that belonging to the
mean circle of the inner cross section, and for this mean circle let & be k. Its
actual form can then be represented by the equation ’

k=k(14aycos 2v+agcos Bv4+"...) . . . . . . (3)

where a, is of order k.
The outer surface can be represented by the form

k=ky14B, cos v+ B, cos 2v4BzcosBv+ ... ) . . . . . (4)

where, as in the former case, B, is of order %~

It might be thought that it would be possible to represent the outer surface by an
equation of the first form, and the inner surface by one of the second form. But we
have no right to do this, for the inner surface might not contain the critical circle, and
it would then be impossible to represent it by the second form. To assume that form
for it would, therefore, be equivalent to assuming that the inner surface contains the
critical circle of the outer. Now, the outer must evidently contain that of the inner,
hence the equations above given can actually represent them.

The mean circle approximating most closely to the outer surface will not be that
represented by k,, but one which does not belong to the system % at all. It will be
necessary to know the distance of its centre from that of the inner mean circle.
Now [T. F., Eq. 6] if R, =, denote the radius of the axial circle, and of the cross-
section recxpectlvely of a tore (u),

Rir=C a/r=8
Hence for the inner surface

radius of cross-section=0a/S =2ak,

; t d order.
radius of ring =aC/S=a(1+ 2k12)} 0 second order.
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To determine the similar quantities for the outer surface let it meet the plane of
the ring in the points (¥, lc") then

K¥=ky(1—p8,) K'=ky(1+p8,) (to the second order).
Hence
radius of cross-section=4 {(R"~+7")—(R'—+')}
=}
=2

(R'=7) +(R"+")]

radius of ring

From these it follows easily that

radius of section=2ak, 1
radius of ring =a(1+2k,’+2k,8,) | ' (5)
and distance between centres of mean cross sections
=2a(k’—k*+k,B) j

the centre of the outer lying outside that of the inner.
The volume of the core will be

“‘277'/0@iz an’ dudv

taken over the section. Let us first find the volume of the surface bounded by

=ky(14B, cos v . )

Volume
'—'277003.( j (O—c)3dudv
1
—770&3! [(0_6)2—} dv
__sff_dv
=1Ta R ‘(0_0)2
Now

1 1 - 2¢ . 8¢
(’6_7»“)2=62<1+6+'@+ ax >
=4k (14 4k°+ 4k cos v+ 6k cos 20+ . . )

Along the boundary f= k(14 B, cos v+ B, cos 2v).
Therefore to the second order in the bracket

1

T=op ——— =4k {1+ 42+ 18,2+ 68,k +p cos v4-q cos 20+ . . .}
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Hence volume
=870’k X1+ 4k’ +3B,°+68,k))

or volume of core
=8n20B{ky? — b2+ Akt — b )+ 1Bk 68 kS =m (say). . . . (6)

t.e., to lowest order

m=8ma¥(k*—F%*) . . . . . . . . . . (7)
8. The circulation of the ring, taking the velocity through the ring as positive, is

HlA @@d dv

taken over the cross section. Hence by what has gone before, the circulation due to
the actual vortex filaments of the core is

p=—AdrAaB{k? k24 Akt =)+ 5Bk 68 8 . . . . (8)

The outside stream function is

Y= —%VP2+737:0 se AR, cos nv
Hence the circulation of the fluid outside the ring is [1., Eq. 4]
2
o= — ”‘/(A+A+A+ ) e (9)

Again taking the circulation round the inner surface of the core, the circulation in
the core additional to that due to its own rotation is

,,,1=—71‘£(A0+A1+A2+ .)—477Aa3(lc12+4k14) ... (10)

For the sake of greater generality we shall suppose circulations, additional to that
due to the core, as existing in the outer irrotationally moving fluid, and in the core
itself. In the case where there is none added to the outside fluid

pe=p

whence to the lowest order of small quantities

Aj=A, 422 \/2
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If there are no added rotations A, A’ will therefore be of order 4* with reference to
Aa*. By always taking them to be of this order therefore the approximation will
still be true when there are added circulations.

4. Tt will be convenient here to consider the equation giving the pressure at any
part of the core, including the case where small vibrations are superposed on the
steady motion. The equations of motion are, d being the density, and taking the
motion in the plane of z, ,

—

Therefore, integrating along a line in the plane of 2, z,
Lop g o g8 ¥ gy B
_ d( 2 gt olz) (uclx—l—wolz)-l—u( " dz>
—l—w(% dx+%0 dz>+Aw(u0lz—w0lm)

or if » denote the velocity at any point and o' the velocity along the line of

integrations,
_lEp_a ), by

| AR VAL TR
Therefore

§=f(¢)_¢—%v2+A¢, 1)

where ¢ is the flow along any line in a plane through the axis of z up to the point in
question. It is a function depending in general on the path of integration, but é is
independent of this (is in fact due to the added irrotational motion) and is single
valued when  is so. When ¢ is many-valued (as, for instance, in the case of
pulsations), ¢— A4 is single-valued.

Section II.—Steady motion.

5. Suppose the approximations are carried so far as to include terms in cos nv in
the stream functions and equations to the bounding surfaces. The constants to
be determined will then be V, the n—1 quantities «, the n quantities 8, and the
coefficients A’,, A,, B,, 3(n+1) in number—or in all 5n-+3 quantities. We may

MDCCCLXXXV. | 5 B ,
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regard A’,, A, as determined by (eq. 9, 10) when the circulations are given, and B,

will be determined by the fact that the pressure along the free surface is zero, whilst

it is IT at an infinite distance. There remain therefore 57 constants to be determined.
The conditions to be satisfied are the following :—

(1) 4, must be constant along the outer boundary of the core. This gives n equations,
viz., by equating to zero the coefficients of cos v.... cos nv.along the surface.

(2) ¥ constant along both the outer and inner boundaries of the core. This gives

- 2n equations.

(8) The pressure must be the same on both sides of the outer boundary. This
gives n equations.

(4) The pressure along the inner surface must be constant. This gives also n
equations. Hence on the whole the surface conditions give 5n equations,
sufficient therefore to determine the 5n constants. It is therefore possible
to approximate to any order desired. '

It has already been noticed that A’y A, are to be regarded as of the order %* with
respect to Aat. It will be seen later that when this is the case the B are of zero
order with respect to the same quantity. Hence, if in the approximations account is
taken of A,, the term in which B occurs must be carried as far as B, cos 4v. It will
be necessary therefore to carry the latter terms to the fourth order, except in the case
where the added circulation is very large compared with that due to the actual rota-
tional motion. This case is therefore a much easier one to discuss than the more
general one. 'We proceed to apply the conditions given above to determine s, v,.
Our method of procedure will be first to express the functions in terms of %, and the
cosines of multiples of v; then to substitute the value of % along the surface, and
reduce the expressions to a series of cosines of multiples of v, whose coefficients are
functions of %, or k, as the case may be. The conditions above are then applicable

at once.
6. The function g, It has been seen (1) that

1 wwpr
Y=—34Vp’+—==3 A" R, cos nv
A/ C—ec

Now,

1V 2 12VSF212V 1_k2>2
AT <C—c> == {1+k2——2kc}

=12V (1 424244k cos v+6k? cos 2v)

For later purposes the value of (C—c)™ must be carried to the fourth order, and
then
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1 @R
V(C=0) " A/ (L + k= 2he)

= \/(Qk){ 1+ 124kt 4 (k4 24°) cos v+( +—1~6]c4> cos 2v

+§%% cos Bv+E5k* cos 47’} (12)

Substituting the values of R given in [I., Eq. 11],

A’ R,+A" R, cos v+ AR, cos 20
==k AL =14 3L+ 1) A 35 {1 —3(L—L)E A, cos v
+E7H(1—5%*)A’, cos 2v

Putting in these values and reducing, it will be found that

+{—%A'0(L 2)+3 ]c;l 2j/v}k cos v N ¢ 1))

Now, along the outer surface

k= k2(1 + B, cos v+ B, cos 2v)

whence

L= L2+4:81 —p, cos 7’+(4:81 —B;) cos 20 } (14)

BP=k2{14%B,2+ 2B, cos v+ (28,4152 cos 20}

Suppose that when these values are substituted v, becomes py+p, cos v-4p, cos 2v.
This gives the value of i, along the outer surface, and since this is constant, p,, p,
both vanish.

Make these substitutions and reduce, then it will be found that

1 /7
D= b L= 2 Lo 12| 34, — 1514 2k

g 1 20,
— 38 A L= 3+ A B |
202V , .
$2k2+%,81A0=0 LLo(15)
3a*V

p ’ 4 'A/ 4
Vo= TN DR+ A =T B4R A

A
%: — A (Ly—2)ky+E " —

[ ' . A 207V
+%/81{_%A 0(L2“3)k2_‘12‘7{ :;2 k }
5B 2

-
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Hence
A’l_’*é;r/c +< %)A’Ok22 )
P A e 1.V S CL)
Now by (9)

A A A =— "\2/"‘2

Hence to the second order
, B oot 4a®V
R e L e

[N Mo Mot — _& _@
Ny= w\/2+{;72<L2 2 /c2> \/z}k C . (18)

Again, differentiating (13) with respect to &

or

SR e =2
-|-1L——A’(L 3)— g,c;—i“/;f}kcosv 'F C . (19)
+J 2A/(2L—5)— 2‘]:» 6\"‘/;7}k2 cos 20 |
Along the surface this becomes
\}oksg’,? LA (= (Le— 1)} ]
ok +gﬁl{ %A'0<L2—4>k2+%%§—2j§k2}
+'{—%A/0(L 3)— 91c2 «/4 }/c cos v - (20)
+[—aien—n =3 ="0
+1,6’1{ 1A%(L, 4)+2 Ay 2\“;;7}]75%%20 )

Further, to the third order of small quantities

1 wg

- e
75 = {-—%A 0(L—-2)+%~ ST }76 sinv
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and along the surface
=— { —3A (Ly—2)+4 “"_Y}kz sin v
-4 terms of the fourth order.
Hence by (15)

1 é\—l—’—?_gA’O,B1 sin v4terms of the fourth order . . . . (21)

\/2 ov

7. The jfunction {.—The part depending on Ap* and B must be carried to the
fourth order. The part depending on the A, is similar to the expression already
deduced for ¥, without the terms in V.

LApt=1 Aa“’(——-liy

1+ 4 —2kec
=4 Aa* {14 12474 42k* 4 8%(1 + 6%?) cos v+204%(1 + 4%%) cos 2v
+40k° cos Bv+T0k* cos 40} . . . . . . (22)
k™

» M(C ) OTO 4\/(0 0{1+4}.«k2+'~_ }
__7“/‘ By{ L4+ 4247k k(1 +572) cos v
+153(3 4-24%) cos 20+3k3 cos Bv+£34* cos 4v}

B,T, cos v=

8\/(0 6)(1 )cosv
_3my/2
-8

1
V(C=0)

Bk { k4 3+ (14 L4%) cos v+3k(1+ E4?) cos 2v
42k cos 3v+554° cos 4v}
157kt

s2/(C=0\
1577'\/2

————B,T, cos 2v= 1k%) cos 2v

\/&C e ?

B {217+ Lk cos v+ cos 2'v+ 1 cos 8v4 242 cos 40}

357kt
\/(C )BT cos3v—-64\/(0

307:'\/2

)BS cos 3v

Byk¥(3k cos 204 cos 8v4-1k cos 4)

B T, cos dv= fn‘\/

*cos dv

v (C‘
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)=

A2
Henc /32

1 Bo(l + 345k +2B k2(1 41 762) +§3—gB k4t \/2(1 + 12/ + 42k%)
4Aant

{4 (BB L+ (1B 1B B A e P cos o

+ 7
{0 (Bort Bt 4Bt S )+ 2o 2B B A B T R eos 20 - (23)

+ 35 (5B 8B, 5By By cos 30

-i—ﬁ( o+15B,+% B+35B3+579 B,+35 X 32. \/9>k4cos4fv

I~

The next step is to substitute in this the value of £ along the two surfaces, which
will give the value of ,/,/2 along these surfaces. Suppose for the outer surface it
becomes

Po+P1 €08 v+, cos 20+ pg cos v, cos 4v

The substitution k=rk,(1 +,31 cos v+fB; cos 2v+ . . . ) being made it will be found
that

D= (BoH 3Bk ooy ot (£BoH EBH A b

» 3ar 40Aa 12Aat
+ﬁ:31k < 0+B +5B2+3 \/2>+ :31kz< 0+3B + \/02&>

+5 Boa( B+ 1B1+ )

and the complete coefficient of cos v is found by adding the terms in A,, viz., (15)
— 1AL DA T HEA B
g0l 2 TRy, TP

This complete coefficient must vanish. Hence remembering that A is of the second
order with reference to Aa?, it follows that

4Aant
Bo+%Bl+;\‘/%=el,- S

where e, is of the second order of small quantities, and can therefore be put equal to
zero when multiplied by quantities of the third or higher orders.
Again, it will be found that
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40A«x
102——16<B +B+B, Tamy2 \/2>k%+16<2B0+21]3 +3 Bs‘l'}ﬁ%)k*

4A 40A
+(BoH B 75 Bil 587 Byt BB, 5 7

ks (3B, 4B+ 1B, + 5B, )

T2A . y
G L L L L )

4A
+3Bsk, <B0 B+ W\jz)

and the complete coefficient of cos 20 is found as before by adding

A
—3AGH— B) — BA(La— 2+ A+ 2 — 38 { Ay (L= 9k, + |

2

Remembering the remark as to the order of A, &ec., it follows that

By+B,+3 B2+§O‘i‘/“; =ep. . .. .. ... (25)

where ¢, is of the second order of small quantities.
The coefficients of cos 3v, cos 4v are easily found, viz. :—

py= s {§By B+ By 3By T k=0

224Aa*
prm k] TPk B BB TBA B4 220 g ko

28

These equations give, to find the values of B to the lowest order.

4

IB,+8B,4 3B, 7By + 4B, 4+ 1 =0
80Aan*

§BHIBH BB, o+ 0 =0
40Aat

B,+B,+3B, + 37;2“—‘0
4 Aat
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These give the following values

Aat
B4—_“62§Bo_lsﬁlg5§-w\/2
Aat
By=—#B,— 2% .
/2
e ()
B,=—2B,— 8¢ . =°
2 1540 15 77_\/2
Agt
—_ 2 - 8
B=—3B— 3 w2 |

These values of the B greatly simplify the coefficients of cos v and cos 2v.
In that of cos v occurs the expression

24A
$B,+4B, + 14B,+ 28

/2

By means of the above equations it follows at once that its value is 18Aat/(m,/2).
The coefficient of (cos v)/4/2 now becomes

9A 2A
_%A ( 2)7924'2 ]l+1A0:81+ 917\c +2\/0;47¢ 54 \/;4 1k22°

So also the expression

occurring in the coeflicient of cos 2v is found to be 248A0&4/(7r.\/ 2), and the coefficient
becomes
A A
—%AO(%,Bﬂ—,BQ)—%AO(L2—2)Zc22+%A1 +o b {AO(Lz —38)k+ 7;}

2A
+lb eoky?+31 \/Qk 4"‘l‘ :31 901+ \/2 :817C 5+(32 4:312)]“2 \/0;

Now these coefficients vanish both at the outer and inner surfaces—their values
for the inner will be found by writing %, for £, B,=0 and «, for B,. They are

written down later in equations B.
The pressure conditions require a knowledge of k&y/8k. So far as it depends on

the B it is given by (differentiating 23)

1w
T2 Ok

(B~ 349 By o5 (204 BB, + 5B A4 20 (314 211)

2}7
{%Bk 14255)+ B A(1 +-37) %g82k3+wA“2(k+18k3)}cosv

5Aqt

+ {§B0k9(8+4k2)+%B1k2(1+%lc9)+%%B2k2+ IBJ T (- 1) }cos 2v

the coefficient of cos 3v, cos 4v vanishing by what has gone before.
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Substituting for %, and putting in the terms involving A, from (20), the value

along the outer surface is

1 8
V2 ok

[ o A 7
=%A0{1_(L2_1)k22} +%:31{ 3Ao(Ly _4)k2+%'k‘}+191k22
+7131131]02"‘%{2/"22'"3—;‘75244'31%22"'&‘1‘:81]“ 3)

- . (27)
+ { ALy —3)ky—1 ch+ ellc2+\/z( 2kS+ 4,31k22}}cos v
L Al
+ [_§A0(2L2" 5)7“22_ _‘E +§:31{ _Q“Ao(Lz* 4) "l‘%}ﬁ}kz

+(ﬁg+4612)k22 + e Bkt ey 2+ A (31k -5 1@3)]@03 w |

The lowest term in — &y, /dv is‘

\/2{—%AO(L—2)Ic+ ST 1k+§ﬁﬁ}81nv

Along the outer surface this is

A Aat .
V2| —1A(Li— 27+ Tkt § s fsin

-+ terms of the fourth order.
By Eq. (A.2) below this is

A
231( 4\/‘;‘]02)31111; Coe e e (28)

and is therefore of the third order.
8. Pressure conditions.—Along the inner surface the pressure is zero, and since it
is a stream line the velocity must be constant. Denote it by U, then

=S+
= (2%:)4{ <k%)2+<%1>2}

Now along: this surface a,=0, and therefore 8¢y, /Sv is of the fourth order, whilst
8y, /Ok is of the second. Hence it may be neglected, and

_ (C—ep 3\1’1
U= -k

MDCCCLXXXYV. 5 ¢
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therefore
—20*Uk=(1+45k*—4k cos v+ 2k? cos 2v)k§§—121
or along the surface

— 208Uk, (14t cos 20)= (14 5%, — 4k, cos v-+2k, cos 20k %"

Suppose for the moment

—h_qo + ¢, cos v+4q, cos 2v
then
qo(1+5%2) — 29,k = —20°U k,
Q1—49k=0
Qo— 291k 4290k, *= — 207U ik, o,
therefore

qo(1—38k?)=—2a*Ugh,
¢ — 4k, 90=0
Qo —6qok"—29gp=0 "
These give the equations (C) below.
Before proceeding to introduce the last condition of equality of pressure on both

sides of the outer boundary of the core, it will be convenient to collect here and
partly discuss the equations already obtained. They are

A (no cos v in )

A Aat
—$A (L= 2kt Do 4 75 Bi=0 (1)

—5A\(Ly—2)ky+% 1+4 Ko+ \/2k6+2,31< 0+4§; >=0 j (2)

B (no cos 2v)

—3A(Ly —2)k2+iA1+k2+16 en 505 It b Aget g ) =0 o
—IA(Ta— 2l A T b R L (At k)
16 V2 @
—18 {-1-,3 <A Addt k2>+ 1A (Ly—3)y 3 2T ek, — ——k3}
M1 4”1 N 2 2]{;2 4 12 2 ~/2 J
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C (constant pressure inside)

1A,{1—(L, —1)k2}+ ek, +2\‘j‘2‘k2+;§_§k14____ 2aUlg (1+3/c2) ~ )
— AL+ 1)]"1"%—14' ek +11k13\”/“2_ > (2)
A 4 Aat .

— AL +3)kP =7 la2<A0—7%k12>+ el f 1922 «/2 =0 J e

Values of A, A,.—Subtract C (2) from A (1) and divide by %,

A, Aot
%A0+k—1; - 7§ k12=' 0
therefore
Aot
A=—3ALP+ gkt . L (29)
Now (10)
me  4Aat

A0+ A1+ Az= _"7\75 - (kl +4k 4)

Therefore to the fourth order

4
(1—3k%) A= —-w’%—% BA(4417E?)
or

Ro= = (1 4b) 4A“1c2(1+ 5%)

or to the lowest orders respectively

_ o _4Aat )
g Mm% 5 o TAdY, (299)
A1=§W~/2k1 +W ky J

Value of B,.—In equations A divide (1) by %, (2) by %,, and subtract

? Aa* 4A
1AL, L)+%A1 Mg —§ 70 (ke —h2)—} <A0+\/;Ic2>
Therefore

131<A0+4j‘2‘ > '%AO(LQ_LI)_%AO<1—le>—§\/9(k2 k2)< :)

? A ky®
== {log 115 } 4 g3 - 0—5)
5¢2
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or substituting for A,
&{_pla | that 2} { pe eI {ﬁg ol B
B myita ) = e e ngl"'?(l"‘%?)}
P 9_&12_,
Yo /2 kg
I, ‘,

B M~ k2-—kl { ky Ry LK ke
kg o+ +2 >}—Im+#’<9_7ﬂ22)° - - (30)

Case (1) when there is no added circulation

whence

0

B_ & ko
ky =T log +4k 4

Case (2) when the added circulation is very large
B. . ky . ]_cﬁ A
i +a(i=30)}
Value of e,.—Substituting for A, in equation A (1)

—3A(Li—3)+7 o+ T k=0

or

Ee=_1 o ky > + " + wa
19 A\my/2 /62_]{;1 77-\/2 Y g2 k2—-k27r\/2
a - ky,? ’ 4 by 4

== il e e} - G

Value of U, —Substituting in C (1), the surface velocity is given by

21 3k A HE) A A s
Byt 2Aa* Aat
U=— a2\/2{1A°(1 5702)-|— k12+13\/2 }
k7t 4A 4Aat Aat
~sE Al R+ ke ]
=pA=R) L (3)

This is the velocity along the surface of the core, not just outside it.
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Equations B (1) (2) and C (3) become when the values already obtained are
substituted

A 4A D
—%Ao(Ll—l)k12+k_lyz2'+ eoley +8\/2k +2“2< ot \/0; k2>

—§A(Ly—1 )k22+%A0(k22— k12) + l_c—:-l_ 16 eoky’ '|‘ 8 '72 kzé_ i- \75(7“24’_ klé)

48 At Bt AT BAR+ 810) + 0k — k) . (33)
__Bl <3A0 /2L2>}=0

3A,(2L, + 3)ky? — 2 —3 48ay o
—3A(2L, + 3)k)* — k2+8 ey +19\/2 —das| Ap— /2 M )
Subtracting one-half the third from the first

1 1 4A

HEAG + A (1 s ) =1 T e (325272 =0 )

Eliminafing e, from the first and second -
8Aa Aa Foyt —k 4

+2@(A°+72‘ ) %55( °+4§f )

1 4Aa

In order to determine V, the velocity of translation, and the quantities ay,, By, ¢, Ay,
it will be necessary to consider the remaining condition, viz., of equality of pressure
on both sides of the outer boundary of the core. We take the general case where
the densities of the fluid in the outside and ‘inside are different. In this case, even
when there is no additional circulation in the outer fluid, the velocities on the two
sides of the surface will be different. Let dashed letters refer to the outer fluid; also
let p denote pressure, d density, and let TI = pressure at an infinite distance. Then

];,— const —4 (vel)?
therefore ‘
p'=0—}d"U”

If U, denote the velocity along the surface inside the core

p= const —4d.U,* 4+ Ad.y,
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also

0= const —3dU2+Ady,

= %dUlz"I‘ Ad(‘l’z - ‘1’1) - %OL U22
=II— %d’U’gz

therefore

along the boundary. Suppose for the moment that

U,*=1+m cos v+4n cos 2v
U, ?=U'+4m cos v+n' cos 2v

Then the equations of condition are

M—3d7=}dU, 4 Ad(— ) — bl

d'm'=dm L (34)
d'n' =dn
Now
=) + ()]
Sty
Further

(C—c) __ (14K —2ke)* 1+ 5k —4k cos v+ 2k* cos 2v
S T 21—k T o

and along the surface this becomes

S (1 Sl 4B — 4k cos v-+ (48— By 2) cos 20]

Also substituting in (20) the values of A’}, A’y determined from (15)

5 v ,
T3k = hAG {1 — (Lo D%} =200 koA (=18
4aV

+{ LA (2Ly—5)—— +3A’ ’31}70 COS v
IOaV

+{—A’O(L2—l) s +A’0k2 '81<1A’02L 5+4$’>}k;cos 2

Hence

C—e)?/,8 1 , 6 V ,
O (8 = s [0+ Lo — 021+ 0 =3Bk,
402V

+{ AL — Dt — 5 Bt AT, | cos v

’ ' 1 a*V
+ AR08 HB)HI L, — 0k = T

—Bik <A' L,—32 -—-2+ 2 >} cos 21;:]
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Also (21) = by 1
—c
S v 2,/2ka?

A’ | sin v
which in the square gives

16a% ——A'*B%(1—cos 2v)

For the first approximation we shall keep as far as cos v. In this case

©=f 8% 1 [yxr [ ar 44V,
Y a%\/z[lA {AO(L —})+ 52 %AO%}k2_cosv:|

~and in the square

, , WV,
)a%z[u T A’Bl}kzcosv]

or, to lowest orders
1 ag
T 8atk,?

m'=— 2ah {AIO(L %)""4“ v

B A

So, to the first three orders of %, we get from (27)

2Aat

A koot { —bALa=8)— S+ et (TR 4Bk b cos o

oy _
\/27“2 ok =3t 3

Substituting for ¢, and A, from (A.2) and (29)

1 b\[rl_ 4Aat
V2 kz Ok 1<A°+ V2 k 2)

s e

whence
©=opp b¥u_ 1 [, 4Adt
@S Pk T a2 | ® Aoty NG >
' Agt Iyt
A e ) e
and the square is
1 4Aa
o (At s )
4Aat Aat/. Iy 4Aqt
‘+< ot \/Z >{ %A< >+\/a2< ,@> kf—%%(Ao——\?%kf)}kzcosv]

20—
R
S

-
<)
I
>
NNES
|5 @*
ol
[S]
~——
[SpE—
F
ES)
Q
=}
(7]
LS
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Hence, applying the conditions (34)

a d 4A
M~ g AP =3 Adlo— ) — o (Aot 5 )

’ 4a*V y
~ g Ao+ - b A

d 4Aat k2\ Aat X ) 4Agt
=g At ga W)~ (= (- (T )

Now (29a) to the lowest order

4Aoo _ mo | 4Adt
Aot 75 ¢2 = _ml/z 2 (B—=hr)
=—(m +#');r7§
and
A= _;,‘.l:—g% from (18)
Ul-:*% i ~ from (32)
Yo— P =Ao(k*—k 2)—*AO( —L,) from (15, 23)

S ‘o 1
' =*%"'“ olLy—Ly)

Substituting, the above equations become

.__..__.1 . . ~
H 3277'20/2162{”'2 (P‘]-+I'L )2d}—32 9 2]\7 2d Ad{#a+ (Lz—Ll)}

20wl

{ — woor( L, -—l)+4a27rv+ gl Bl}

2

—M@{ —8m /24, (1 -—22){-#1&0&4 (1 —’;—9 ky?

2r?
2B, _4Aat
SRV

o (39)

The latter is

Iu %l’(—‘- —2L,+ 1) a4 0tmd V

— C oy '§g, _ k® /\]%2_]"\2 1,7 s a B @224'}.12-’
== (l"‘l""'f")d{fz(f"l ]c22_]c12l""/ 7, _E”a(1+k22+2lc l"l_kgg_/ﬁz:“>}
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therefore -
drrad sV = —pfd’ (% —2L,+ 1)
2
’ 3 ’ ’ /k~2_'_k2
— (o) galmbi=Ri—pkd) = L ()
R h? N
—%(m I~ _kw> ()

This gives V, the velocity of translation.
The first equation is

1
= somtap s (I )zd}+32 D %2d

1 I wd
+167r2a2{i" <,u1 ic2M >( ? Ll)}icf—klz

or

X 'd
32772(121_1:{#22 (l“1+l‘)2d}k2+ +2{ </u.1 i LgfL)(L Ll)} 'u'k2

Another equation between a, &, &, is found from the fact that the volume of the
core is constant, ¢.e., (7)
8w (ky?—k,?)= volume =m say

therefore
1 ke X
4mIl ne 9 __ kE ,
= — (w ) d} 1—“ Fmld. 5 LD P b [(Le=Ly) spd.
1"
7c22 ky?
Write
K lyi=a
Then
4mII

. = (M1+M')zd}(1-"w)-lrmzd@—l)-l-zf/«'d {/"“l_<l‘"1_%> logw} (37)

To find a,, B,, A, €,, we must take account of one order higher and the terms in
cos 2v. This gives another equation, which, with the previous ones (33c), will be
sufficient to determine them. As we do not require them for our present purposes
we shall postpone their consideration to another occasion.

It remains to discuss the results already obtained, viz., the three expressions, which
give B, V, and the relation between & and the &’s (or R and 7, 7).

The formulee are, writing « for k,%/k,?

| , 1 e - 1
(m1+w) ,'§= —-%m{log;+3(1—w)}—%ﬂ {%—éw—l—glog;]; - (30)

MDCCCLXXXYV. 5D



750 PROFESSOR W. M. HICKS ON THE THEORY OF VORTEX RINGS.
A dlv B
rapad’V="34p,"d "*+2L =1

- 1 , .
—%‘(M1+M’)d{3(ﬁ11—x—#x)_gl’«’(l“'m)—(l‘h 1+i YZ} .. (36)

R = (' (4P (1 )+ —1)

+2,L'{,/+<,Ll—i~_—m#')1og;}d N €10

Discussion of results.

9. (B)). The expression for B, gives the relative position of the internal hollow to
the outer boundary of the core. The centre of the cross-section of the outer boundary
is outside that of the inner at a distance (by 5)

— 2a(kyi— k> ,81k2)=2ak22<1—m+%>
2

This is, as we shall see, in general negative. Hence the centre of the inner lies
outside that of the outer, at a distance whose ratio (y) to the radius (2ak,) of the

~outer is
?/='-k~2< —‘70+Bl>
Substituting for 8,/%,
’ 1
(-4 y=H] o 1801 =) |+ o= 5 Tow 3 b=, 41 =9) |
_—_-kz{%pq( —x+ log )-—l— (i——g—o:— wlog9;>}
=pwy+py (say) . . . . . . . . . . . . . . . . . (38)

where 7, y' are the values of y when p, is very large, and zero respectively. If
therefore we know the points at which the centres lie when the added circulation is
very large, and when it is zero, the actual position is the centre of gravity of two
masses proportional to the circulations, placed at the corresponding centres. It is
only necessary therefore to discuss the values of 7,, ¥" separately.

When there is no added circulation

/5—0:0

i —2\

When there is no hollow, =0, y'=35k,. This is the point at which, if the pressure
be diminished, or the ring be increased large enough, the hollow will begin to form.

- log {%)kz
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Again, when £, is uniform,

dy 1 1 1
prEi s gLl

which is always negative, or 4’ continually decreases as @ increases ; while when =1,
y'=0, so that ¥ is always positive.

Hence, keeping the outside boundary the same, if the mass of the core be gradually
diminished (or the hollow increased) the centre of the hollow moves in, from a point
(3%,)™ of the radius, towards the centre of the outer boundary, coinciding with this
last in the limit.

When the added mrculatmn 1s very large

1
Y= 2(1 —ax+ log ;)kz

This is always positive. When =1, or there is no rotational motion, y,=0, as
x decreases, y increases, and the hollow moves outwards to the boundary. From
the formula itself we should gather that when the radius of the hollow is decreased
to a certain small amount, it will be in contact with the outer boundary, and if this
were possible the hollow would slip out of the inside of the core into the fluid, and
there would be two rings formed, one with a hollow only and circulation round it, and
another with rotational core and no added circulation. But this cannot be asserted
until we have learnt the connexion between k, and «, from equation (37), for in the
actual case it will be impossible to reduce k, below a certain limit to be determined.
It 1s easy to see that y, >

An idea of the magnitudes of the quantities involved can best be obtained from
a numerical example. Take for instance the case of a ring 10 cm. radius, and
radius of cross-section 1 cm. Then k,=+%. Take the three cases where the radii
of the cross-section of the hollow are respectively 1, 3, £, we find

=1 y'="055 y1="093
= % y'=-041 ;=053
= Yy =023 y,="026

The limit when ;=1 is found from

1
log = 39+
or writing
e 39—k
E=e¢¥=10"16Xx"115
ve.

x=10"1%x%x"115
a sufficiently small quantity.
5D 2
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10. Relation between «, ki, ky.—When there is no hollow the volume of the core
remains constant. In other words, a’4% is constant. When a hollow exists the relation
is found from the equation

4mIl , 17 .
= {pdd — (A )2d}(1—w)+mzd<——1>+2# {M +( 1%,#) log ;}d (37)
combined with that of constant volume, viz. :
m=_8m’a’(k*—F*)

The first gives the ratio k,/k,, the second then gives &, or &, in terms of @, and «
is determined by the energy of the motion, which is considered below.
In the case where there is no core,

pm=p'=0, m=0, ky=k,

and
o/
3271'20(,2702

b=t A L :
2ak2_2ﬂ_,\/2n N 1)

or, the sectional radius of the hollow remains constant. This agrees with the result

in [I. §9].
It is clear that when there is an added cwculatmn this radius cannot become very
small. For we may write the equation

II=

or

P & Y § S ;
a{ "2 log T = (2 (D} (1 =) it
o P ® 1o (L
2p"*d 42 - log <w>d

Now as @ decreases from 1 to 0, the right hand side continually decreases. Hence

the greatest value is when a=1
Therefore

M <M1+2P~l ><4—+M10Z

T
> pdd - { (g P — 22 d

Hence

1
py*d+ 2.‘*1!’/95d log ” pid

x> 4mII > 4mT1

H12d+—“‘ 1

This, therefore, is an inferior limit to .
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" Now we saw above that yl=%<1 —x+log i)kz

In the case where  is very small, the value of y depending on the added
circulation is - '

P Mk, og 1
mtp 2 +p) Cw
m*d
and > pPd + Al
a

therefore

[t by < 4’mH>
< log (1 .
i S A8 +/t12da

When p,*da is large compared with 4mII
2m Ik,

cnida

Hence, the centre of the hollow never approaches near the outer boundary.
Two or three cases further may be usefully considered. When there are no added

circulations, u, =0, po,=p/, and

1l—2z

4jn:l—q:}uﬂ{(1--acz)cl'+(1+9c)d—2xd loga%} N X))

This gives the condition when a continuous core begins to develop a hollow. In

this case =0, and

4m Il ,
i)

or

4mI1 .

Now a depends on the energy and increases with it. Hence as the energy increases
a point is at last reached at which a continuous ring begins to develop a hollow. The
sectional radius 7, is then given by

8ol =y (d+ )
If @, be the value of @ when a hollow is just formed, then in general

(A d)=(1—a)d'+ (14a)d =" log 1/a,
or if d'Jd=p ,
Witp)=(l—a)p+ldte— " loglz . . . . . . . . (42)
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So also if 7, be the radius of the hollow when a=o and r for any other value of

l—x+alogx , log 1/z
———(—)——+2 1w (43)

” 9 2 '>2 Y w?
P =p— (p ot T 2p
Where also 87°117% = p%d.
Hence 7°(14p)=7%, or when the hollow first forms the sectional radius is

,\/ (1—_:_;—) its ultimate value.

It will be important to know how the section of the core alters as the aperture
increases. If » be the radius of the section, r=2ak, Also m=8x%a*(k*—£k*)
=2x%ar¥(1—x).

Hence

P yo¥r Ty,

a r l—a

~ Differentiating (37) and substituting for da/(1~x) it will be found that

[,L 2(1_“’) +2p —————4;1,'2-}-2,!4» (“““,“' ;“'1> og J

& xir

=—2HM2‘2P—(M+F«) }(1—90)+m e +2#<M1——#)+12ﬁ,;10g1'J@-

Here the left hand factor is always positive, and the right hand factor is clearly
positive when « is small whatever the relations between the circulations and densities.
Hence the section always decreases as the aperture increases, when the interior hollow is
small compared with the outside.

When 2 is nearly=1=1—2 say, the equation becomes

. nda d’ , on ] A7
A+ pp’ +50%) = — 22{M223+2(M12—mp« + 54 2)2} "

Hence, when 2z is small, so also is dr/da, and it vanishes with z. In other words,
when the hollow s large compared with the outer boundary, the section of the ring
decreases very slowly as the aperture increases. 'When there is no core at all we have
seen that it remains absolutely constant. In all cases where there is a hollow the
section decreases more slowly than if the core were continuous.

It remains to see how the radius of the hollow itself changes with increasing
aperture. Here »*=xr®. Hence
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=1——-x<¢_i_a+ 2czr>+zi¢

X a

1 da = _dr
Substituting for dr/r

"9 4 19 7 2 A%
g 11— ()} (L =2 =2 p (1 = 2) + 2071 +2) + 20 </.e1 ~p >1og

ar __ & da
r D “

Where D is the coefficient of —2dr/r in the equation found above.

The maximum radius of the hollow will be when « has the value given by

, 2
{m’p—(ma+p)"} (1—’0)2—2/%#(1—w\+2M2(1+w)+2M<#1 i w/t>10g"‘0

This is satisfied by x=1.

It is easy to show that the expression on the left increases as x decreases, and
therefore that dr/da is always positive. Hence

The radius of the hollow continually incmaSes, as the aperture grows, up to
coincidence with the outer boundary.

11. Velocity of translation. The velocity is given by the formula in (36). If the
value of B,/k, be substituted in the second term it becomes

o e

2 \

722 —10z+7
—4a{ 81— H4(7T— 13+ (44)
Case I. Where there is no core d=0, u,=u'=0, x=1, 8,=0.
V=Lt2L—1). . . . . . . . .. (45)

8ma

which agrees with the result obtained in [I. 21].

9
Case 1I. Continuous core. p,=0, k=0, =0, B/ky=—

4wau2d'V=%#22d'<2L+§>—gwd. L (46)
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In the simplest case where there is no added circulation at all p,=p'".

5 1d
V= (2L+4 M)

=H<L—%> when d=d'.

In general, when x is small, the most important term is that involving log e

It is given by

, , — _® , 1+
drap,d’ V=>4 pyd {2L2+M._,___1 —x_“_ (LI—L2)} +12“</"'1—1__0%J’“ >< Jﬂ >(L —L)d
et

) _ 2 / / 1 \
BropV=p, Kl ptp 1 w) 2+< 1+/» l—w)Ll}

mefq_ # 1 N2 1N,k
+(”l+”)<1 ,,,1+,/1—x><1 ﬂ1+#'1—w>d’log kYo (47)

When there is no added circulation at all, and d=d’

V= 8m3 L,+L, 1(% L,— L))}- B 1:))

As an example of the use of the formul® let us find the alteration in V, in this
simplest case, when the radius of the ring is doubled, supposing originally that the
radius of the ring =10 cm., outside radius =1 cm., and inside =4 cm.

Since the volume is unaltered, if ,, #; be the new values of ky, &,

8(%y— k) =k’ —k*= 145 — 155 =150
also since
4mII
T = ou? (1—% log 1>ol
v
—_ )? Pe__1(y__ ) _"'g
1 2x22—x12 log 1—2<1 2]( Y 1 7,
or
1
1 log, z=4+ % log. 2
where
2= (/K1)
therefore

log,, 2="781(z—1)log), e
=3174(z—1)
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whence
2=1'8b
But
k*(z—1)=1z850
and
3
M1"=12800 x -85
Now
1 z2+1
/1 1
v Wmigopleerinoy
VR 2* 14%
L, %(1 )2lob 1/93—;}1__00
=-594,

If the pressure had been so great that there was no hollow at all, then

8k=F=zis

and

These cases are however not comparable, their masses being so different.

12. Energy.—The energy will be composed of two parts, external and internal.
Denote them by E,, E, respectively, and let

E=FE,+F,

We need only the lowest order of terms in E;. We can easily, therefore, obtain it
by supposing the core to be bounded by concentric circles, and the velocity at any
point to be, V in the direction of translation, and U perpendicular to the radius to
the centre of the cross-section. The energy will not contain terms in V U. Hence,
R being the radius of the axis of the ring,

B,=4.20Rd.[ 2mrdrUs+3mdV®

= 2#2Rd.[ (\/ +Mﬂ>wlfr-|-lde2

=2eRa{ 2 log P12 (P =)+ 5 (=)} HimdV?

MDCCCLXXXYV, 5 B
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Now
__me , pa P
A= 7r\/2+7r\/2 T —7r?
_ /"’, _ :u',
Ao= draP(k?—0?) — w(rd—r?)
Hence
E1=71£Rd{<f‘1 1—aM > log +2M <M1 >+ ; /2]—+g£} +imdV? .. (49)

Here the terms in p are small compared with the others, even in the case where x
is nearly unity. Hence the principal part of E, is

E,=1{Rdu,® log ~=§dp, (L, —Ly)

To the same order E, has been found in the paper “ On the Steady Motion of a
Hollow Vortex ”[L.,, § 12]. Using the result there obtained

E,=27r,[ Uy +3 U, V(R*— N4 4%) + 3R V] d

where
M o)
U= 4:760]62 T 2,
B

Further, since A=1—4(L,—2)k,?, r,=2ak,, R=a(14 2k?)*

—\? 41t =4(L,=}) ok = (Ly—$)rs’°
Hence :

2q
Ezr_-nga«g[g;,( )+ Ty )+ AR,V |0

(1 —2k,? Al
=M,[M251m-2; )(L2“2)+£7TR(L2—%)+%V2] e (00)

where M’ is the mass of the outer fluid displaced by the ring. The most important

term in this is

By=M'g2 5(Li—2) =ddps0(Ls—2)
E, is in general of order %* with respect to this, unless there is an added inner
circulation pw,.

When there is no added internal circulation, the energy of the ring itself is small

* See erratum at end.
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compared with the whole, When, however, there is such a circulation, and when the
hollow is small, the internal energy is large, and may be larger than the external.
As, however, the aperture increases—or as we have already seen the hollow increases
—the internal energy will rapidly diminish. The effect therefore of increasing the
whole energy is to actually decrease that of the core.

The external energy will, as in the ordinary theory, increase with the aperture.

Section 11I.—Small Vibrations.

13. The vibrations here considered are (1) when the core is fluted, and (2) when it
pulsates. The normal modes can be represented by principal displacements of the form
a, cos nv, together with a series of terms whose amplitudes are (with respect to k)
infinitesimally smaller than a,. The time of vibration will be a function of a, £, k,.
and may therefore be supposed expressed as a series in terms of ky, k. It will be
the aim in what follows to obtain the first, or principal term, in this expansion, in
other words,—in functions of k,, k,—, %, k, will be regarded as small quantities of the
first order. To this order it will be found that we need only consider the principal
term in the normal mode concerned.

Let the form of the surface at any time be given by
k=Fk,(1+ a, cos nv4ry, sin nv) 51)

=ko(1 4B, cos nv+ 3, sin nv) )

where «, 8, v, 8 are functions of the time.

The motion is then determined by the stream functions already obtained, with an
added stream function, or velocity potential, to give the small motions.

In general, the stream function for the vibrations will be many valued. It has
however been shown (I, §18) that in the case of fluted vibrations this portion is of
order £**1, and may be neglected. This cannot, however, be done in the case of
pulsations, and for that the velocity potential must be employed.

Let x4, xo be the additional stream functions.
Then

X1= \/(G ){(A R+ B,T,) cos nv+(CR,+D,T,) sin nv} 4

\/(C 6){A .R, cos nv+C/, R,, sin nv} €

where ¢, € are uniform along the boundary.

The expression for the pressure at any point of the core has been already found
(11) viz.:

P=Ctf(t)— p—b(velP+Ay.
5E2
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Since it will be necessary to obtain the value of ¢, it will be necessary to obtain
the value of i at any time ; that is when the boundaries are given by equation (51).
This will consist of two portions, one determined by the normal motion at the boundary,
and the other (e) by the fact that the circulation remains unaltered.

14. To find the function x it is first necessary to know the velocity normal to the
boundary at any time. Now since the boundary is not the circle, it is in steady motion,
the function vy, will itself produce a normal motion. This must first be found. Let 6
be the angle which the boundary at any point makes with the circle #=u, then

te 0—@_@_ lﬂc
M= == "k dv

or since
k=k;(14+a cos nv+y sin nv)
tan =n(asin nv—ycosnv) . . . . . . . . (52)

Now the normal velocity outwards is

_ it i
T p v dncosﬁ— du dn sin 0

where y=1,4, ¥, being the stream function already found. Also, remembering
~that 6 is small, the normal velocity is

dn .
=—, 008 0—Usind
=2ak,(a cos nv+y sin nv) —nU(a sin nv—ry cos nv)
Therefore, along the boundary
—= X7 (2ak,a4nUy) cos m+(2ak1§/-—nUa) sin nv

Then the two sets of conditions give (letters with one dash referring to the inner
surface, and with two dashes to the outer surface)

AR/, 4+ BT, =~aU;y/ (2161)0‘4‘%3 (2]“1)%';’
AR’ 4B1", = —a*U,/(2k)B+% (2h,)'

CR, + DT, =—aU/(2hy)y == (2h)a

CRY, + D1, = —a?U,/(2k)8 = (2h,)if
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whilst for the motion outside the core

AR’ = — U’y /(2h)B+2 (k)5 j|
| r (54)
CR/,=—a*U’y/(2k,)8 — (Qk )R JI
Denote the right hand members of these by &, 7, &, v/, 7;, 7}, then solving
ET// _nT/
A R/nT// _R//"T/
B= —'leln'i"’)RIn

R /nT//n —_— RI/nT/n

with similar expressions for C, D, in &, 4.

Suppose now

e—\/ 2{(A R,+B.T,) cos nv+(C,.R,+D,T,) sin nv}

It has to be determined from the fact that e is uniform along the boundary, u.e.,
when k=Fk,(1+a, cos nv+y, sin nv), &c., and that the whole circulation remains
unchanged.

If U denote the velocity along u, at a point of the boundary; V the velocity along
v as determined by ¢ alone, and @ the inclination of the boundary to  (and therefore
a small angle) ; then the circulation is

;L=W—;/—2(A+2An)+f(U cos 04V sin O)ds

Now

U cos 04V sin 0_—.:<'U0+d(717jﬂO bk)(] —%2>+%: ok.6.

._U0+d;%k+~ N

Now 6 is of order ok Also 0% is of higher order than we require; for both

reasons therefore it may be neglected, and

adv

J'(U cos 0+V sin 0)0l9—,u,—|— 7 .{ k(@ cos no+y sin nw)

since ,
dn a

dv~ C—c¢
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Also

dU kr”occosm+rys1nnvdv
C—c¢
U 2w 9 2 —nu
=ak d]j’acos =g dv
Zrakae e dU

S dk

au
—_ n+Q 720
=draok 7

and can therefore be neglected except in the case of pulsations.
Hence A+3A,R,=0 to our order of approximations. The terms in e can therefore

be neglected except in pulsations, .e., n=0.
15. The next step is to determine é. Now ¢ is the flow along any line up to the
point in question. Choose this line to be the two portions
(1) straight line v=n from w=wu, to u=u
(2) circle u=wu from v=v to v=mn

The part of ¢ depending on 4, depends on the path of integration, but is constant,
and therefore will disappear in ¢. Consequently the part depending on x is the only

portion needed. Hence

s=[ [ i v ) 2o+l
=[Lal e e
=1+ ¢, (say)
Now
\/((} )(L cos nv+M sin nv) (say)
Hence

=(= >"“;I'“, V <%>Mdlc
==y A/ (3 J(CR,+ DT, )

+ n~-1
Whence, as the lowest terms only are required, and as R, k and T,oc £ 2

e o]

Uy
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Again, |
Ziﬁ /(2k) {(% ——L> cos nv+<dM M> sin nv}
Therefore
$o= \/(2]6)[ {(dz %L>005 nv+ <dlf —%M) sin m)}d'u
21 dL . M :

= \/fm k) { _<@—-§~L> sin nv-4 <%—%M>(cos no—(— 1),1)}

Now
L=AR,+BT,

Therefore

c_@
du

__.12_L=A<‘.’l R,,>+B<dT” ' %T,,)
=A{(n—})SP,—4R.} +B{—(n*—})SQ,—4T.}

_ 2nSP, _L}_ { 2n5Q, J_}
_AR,”{P—-————M_P”_I 1} BT+

Now P,/P,,, and Q,/Q,_, are both of order £.
Also,

(2n+1)P,,,— 4nCP,+(2n—1)P,_, =0
Therefore

P, 2n+1 20—1P,,
My =90 T 20 P,

or to the lowest order
P,

2n 5 =(2n+1)k
n+41
So
om b _(271—1)70
Quy
and therefore to the same order
& {L=n(AR—B,).
and similarly
aM
E—%M:%(CR,,-—DT,,) ,
Hence
(‘)k)

¢+ Py= const, +-—— RACD {—(AR,—BT,) sin nv+(CR,—DT,) cos nv}

763

(55)

. (56)

The part of ¢, containing « disappearing with a corresponding term in ¢,, as it
ought consistently with the fact that this part of ¢ is independent of the path of

integration.
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The values of ¢ are needed along the inner and outer surfaces. Hence substituting
the values of A, B, C, D already found, along the inner surface

£ RlnT”n R”nT/n _ 2.R/nTln o R'/nT”n R”nT/n _ 2'/R/nT/”
Sk KRR BT g B RT3

R, T, —R"T, + R, T, —R"T, co8s ’)Z’U}

d=

a

2n+l1  2n—1
Now the lowest terms in R,, T, are proportional respectively to £~ 2, k z .

Hence to the same order
. M2 ]C 2 ]c m . 9 k k
¢—_-{ (ic%-]c% €/l — kQ(n_;c)%z m/lc>smnv+( )cosnv}

We shall put for the future
k22n+k12n —_— 2(k1k2)n —_
kz%t —_— ]clgn _-p 4 k.22n __k12n_ q

where it is to be noticed that '
P—g=1

With this notation
=‘{T2{ —(pé\/kl—q;;\/kz) sin 7w‘+(p§"\/kl—q;7"/k2) cosnv} . . (57)
So along the outside boundary
=2 {—(f/li—pnv/l) sin no+ (0l = R) cosm} .. (59)

whilst for the outside boundary in the outside fluid

p= \/(Zkz)( msmm+m cosmv) . . ... . . (59)

16. The pressure conditions.—The expression for the pressure at any point of the
core has been already found (11), viz. :—

=const +£(t) —p—Lv*+ Ay
At a point near a surface this is
S S, S '
19—_- const +f{t)— ¢——<U+ o b+ i‘> —l< 26f+ %f) +A<¢o+%!§ ok +x)
1 oy

=const +£(t)—¢—1 U2~U<—- okt >+A(¢O-—2a2Ubk+x)

U being the tangential velocity along the original surface.
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Now

Hence outside

and inside

also
. M\
du =./(2k) {( §L> cos nv—{—(% ——§M> sin nv}
whence the part of the pressure depending on v is
b 1 U 2\ Sk
E:—gb—U{— Pl 2Aa ) ok+ 2V/(%)(AR —BT,) cos nv
_"__(CR,—DT,)sin nv}—l—A(X— 202U k)

2«/ (2%)

Along the inside surface this vanishes. Therefore

1105\/ (2k)—gn+/(2k) 3+ U,(Uy 42402, )y—;

2k,) — g0’/ (2k,)}

—A{4“ L o dah Uly}

— 2 /(21 =/ (28) ] U, (U, + 280, ) am S50t (pEy/ (2h) — a0/ (21,)]

+A{4“ 2k gk, Ula}

Substituting for & %, &c., these become

4ACK? - | da%h? - '
28 o+ “nl py+{Uy(U;—2A0%k;) +0U,p}y

n

+<2ak2gU2—2a %‘f qU1>,é Aok L8 —nU U2 I 208=0

MDCCCLXXXYV, 5 F

(60)

(61)
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with a corresponding expression from the second equation. In these equations alter
the meaning of the a, so as to write a for k%, y for ky, B for kB, & for k.
Further, write u, v, w for U,/{2ak,), Uy/(2ak,), U’y/(2ak,) respectively. Then these

equations become

— Aao+py+ {n(np+1)u—nAa}uy+ng(v— w)B—q8—nfuvgd=0 1 62
pz;c.-{- {n(np+ 1)u—nAa}ua-{—AOL).z-—q,é—anuv,B—ng(v —25)8=0f - (62)

Along the outside surface, we find the corresponding expressions by interchanging
ki, ky; a, B; y, 85 u, v, e, put —p for p and —q for g.
Then
2 .o . .. .
g:%[{ — pB+(—np+1jv—Aa)ynvB+Aad+ ga+n*uvqe—ng(v—u)y} cos nv
+{—AaB—pd+(—np+1 v—Aa)n08+7zq(v—u)al+q:);+n%wqy} sin nv]

Again

d

P (%), - , [dU"
= _4,,_;_2,- (7', cos nv—m, sin nv)—TU 2<ﬁzbk+

1 9y

aTh o >+const

2k,) ,* ..
= —‘/(a 2) (n'y cos nv—n, sin nwv)

—U'Q{ —TU’y(B cos nv+6 sin nv)+ 20::]62 V/(2k,) (7, cos nv+4m | sin nv)}

Substituting for the % from (54), and altering the meaning of o, 83, v, d as before

P % (Bn(n+1)w?B} cos v+ {5+ n(n+1)u8} sin nv]

d n
Hence, since the pressure is the same on both sides the boundary

qe +n2qzwa—nq(v—u)§/— pB+n{(—np+1)v—Ada} v+ Aad )
=%{,é+n(n+1)wg,8} |

nq(v—u)&—l—q.);+7z2quvy—AaB—p5+n{(—np+1)'v—Aa}v8‘ {

: d’ . 9 E

=d{8-|—7z(n+l)'w 8} ]

When the waves are travelling in the positive direction round the ring, 5k will be of

the form
8k, =1 sin (nv4\t)

8ky=M sin (nv+\t)

or .
a=Lsin\ , y=L cos)\

B=Msin\t , 8=McosA\t



PROFESSOR W. M. HICKS ON THE THEORY OF VORTEX RINGS. 767

Substituting these values, and writing p for d’/d, the four equatlons of condition
reduce to the two

L{pN®+Aax—n(np+ 1)+ nAau} —Mg(N—nu)(A+4nv)= (620)
gL\ nu)(A—nv)— M{(p+ p)\2— Aah—n(np—1 )P —nAav—n(n+1)u?p} =0 | *

=0
} (63)

Whence the equation to determine X is

l PN+ Aa—n(np+1)ut+nAau , gN—nu)(A4nv)
gAFnu)A—nv) , (p+p\—Aar—n(np—1)v*—nAav—n(n+1)wp

17. Case I.—No rotational core. Here the periods are given by
A —n(n41)uw?=0.
The time of vibration is therefore

o (dmakyy
O/ 1) pay/n(n 1) | |
or by (39) '> Coo o, (84)
|
J

T 2I14/n(n+1)

and is therefore the same whatever the size of the ring. Moreover, when n is large,
the time varies inversely as n. The ring is always stable for vibrations of this mode.
The expression for the time does not agree with that found in the former paper
[I. § 18] The reason of this is stated in a note at the end of the present paper.

Case II. Continuous case.—Here pu,=0, k=0, a=y=0, p=1, ¢=0, and the
equations of motion reduce to two :

—(1 +p)B— {n(n—1)*+n(n+1)w’po+ nAav},B-l—AaS: 0 }
—AaB—(1 +p)o— {n(n— v+ n(n+1)w*p+nAav} 8=0J
Here putting
ok=L sin (nv+4\¢)
(14 p)N2—Aad— {n(n—1)v*+n(n+ 1)uw’p+nlAav}=0.

Since the core is continuous
p=—drAd’k}
therefore

1

Ag=—

N
= — 20
dratl,?

dr 2
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whence ,
' oy 20 . n{(n=38)*+(n+1)w?p}
M= S 1+p
and
\o TTEV SRR 0D gy

1+p

In order that the motion may be stable the expression under the root must always
be positive, whatever value n has, = >1. The least value is when n=1. Hence the
condition of stability is

2u%(14p) > (14-2p)0°
or

14+2p
2 2P
Mo” > 1 Sidp)p ot (66)

In the ordinary theory where p=1 and p,=p’ the ring is therefore always stable.
When there is no additional circulation the condition becomes p>1/,/2 or d<d's/2.
The ordinary simple ring will therefore be stable even when the density of its core is
as large as /2 times the surrounding fluid. In any case, whatever the density of
the core may be, the ring will be stable provided it has an additional outside circula-
tion given by (66). In general the two values of X will be of opposite sign, and will
correspond to waves travelling with and against the cyclic motion. The positive root
gives that in the same direction and the negative in the opposite. In the simplest
cases of equal density and no added circulation the roots are —nv and (n—1)wv.

18. Case IIL.—No wnternal added circulation, with a hollow. Here p,=0, =0,
and the equation for A gives one root zero, and the cubic

1+pp)A3+ Aap\i— {n(n—p)®-+np(n+1)w?p+nAapv+ A%IN
P P P P P p
—nAa{(np—1)4(n+1)w?p+ Aaw} =0
in which since
p'=—A4mAa?(k?—k?)
2v
1—2

Ag=—
Denote the cubic by
N DN oA+ d =0

We shall first investigate the signs and finiteness of the different coeflicients, and
then pass on to the question of the reality of the roots.

b Aap  2vp x 1—a
Tl4pp 1=z l—ar+(14a)p
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Since
k ~z+k @ 1+’L”
k 2n_k 2n '—,,l,"’

Further denote 14+a+ ... 42! by X, and (1—a")+(1+a")p by f,. Itis tobe
noticed that since « lies between 0 and 1, these quantities are both positive and finite.
With this notation

b= —2—?-;&' v
and is always negative and finite.
The second coeflicient is
c=— {np(n+ Duwp+n(n—pp*+nAapv+ A2a?}

After some algebraic reduction this may be put in the form

c= -—%[(1+w”)n(n+ Duwp4(1 — )2y} {(n o +3> +724-3r47 } -}
Here ¢ is always finite and negative.
The third coefficient is
d= —m—{(n—l- Dw’o+(np—1)v*+ Aav}
272,‘(,,

2n 2
{( n+1)(w’p—2*)+ {1_96”-1‘:90}”2}”
which again, after some algebraic reduction, becomes

_%n_}&’ ——ny? \—2 e 1\ 7
d= 7 {(n+1)( wp v)-{-X S (n—1 l)w}'u

This is always finite, and if w?p>2? it is also always positive. But if w?p<o? it
becomes negative for values of = less than a particular value, depending on the value
of w’p/v?

The conditions that

N4 eAdbd=0

shall have real roots are
i b*>3¢
i, %4> (403 —18be+27d)d

We have already seen that ¢ is always negative. Hence the first condition is
satisfied under all circumstances. '
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The second condition is

— 44D 18bed—4b3d>27d? . . . . . . . . (67)

Here every term is positive, except when w?’p <% Treating this as an equality,
and writing wp/v*=y, we get a cubic equation in 4. Let the roots of this be «, 8, y
in order of magnitude. The inequality may then be written

(y—a)y—B)y—y)>0

Hence, either 4 >a or between 8 and 1.
When the central hollow is very small, « is also very small. If =0

—_2r,
b o
1 2 ;
m{n(n—l— w’p 4 (n®—3n+4)v*}

<

1+p

L { (n4 Dupt (n—8)?)

In this put for the moment n(n4 1)202p/1)2—|— n*—3n=2§
Then

o= _1%7)(54_ 2)0

_ % s
d_1+pfv

and the above condition becomes

pr(E+2) 18p .
1+p (6+: )3+ d+p)® ﬁ_l)f(f+2)“‘27fz (l-l- )25>0
or
: 1 2 2 4(4+4p+p%
f6-—<8—'—4'0_2(p+1)>§ +<14+16p+4P2 1+p>5+ 2itp O
whence

(f—im 2P)2<§+ 2_(;1{1_)) >0.

In this case the two roots a and B of the cubic in y become equal, and the condition
of stability is

n(n+1)wp-+n(n—3)v?

This is always the case when n33.
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“When n=2

1
wo=(9 ———\p?
6w p><2 P+1)?

or

2041
9. 4P 2
- wp>6(P+1)'L . . (68)
When n=1
1
2 Ve
2wp><2 P+1>v
or
2p+1
s 2
wp>2(P+1)v N (1))

To n=1 corresponds a vibration of the ring as a whole about its state of steady
motion, whereby it describes a circle, without change in cross section, round its mean
position. Instability therefore for n=1 actually means instability in steadiness,
whereas instability for n=2 means instability of form.

For a ring of the same density as the fluid, and just at the point of forming its
hollow, the condition of stability of steadiness is w?>3$v% and for stability of form
w?> {0

For a ring with a very dense core, the corresponding conditions are w’p >1v% and
wp>§, |

When the hollow is very large « is nearly equal to unity. In the case z=1

b= —nv

c=—n(n+1)w?

2
=%{(n+1)wgp—-202}v
and the equation to find MJv=y becomes, writing w*/v*=z

pP—np—n(nt Dk 1—1=0 . . (70)

When p is infinitely large (density of core infinitely small) the rocts of this are =,
and 4 4/{n(n+1)z}. The last two agree with the result obtained for a hollow only,
as might be expected. Hence, when the density of the core is small the ring is
stable when its aperture is very large.

When p=1 and z=1 (the ordinary case treated), the roots are —n and nd=,/n.
This is, therefore, also stable when the aperture is large.
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The condition of the reality of the roots of equation (70) is

2

4n¥(n+41)%34nt(n+41)%>+ 18n4(n+1){(n+ 1)z—;}z+ 4n5{(n+ l)z—g}

>27n4{(n+1)z—;‘i}2

or
(n+1)%2—2n(n41)%*+n(n+ 1)<n+%>z—27n2_2_;@> 0

For all values of n. This may be written

n3z(z— 1)2+n2{3z3 — 4% <1 +%§>z—%} +n{ 3z3—2z2+lfz—~—f—’gz} +2>0 (71)

Call this expression Y,.
Then the condition for stability of steadiness is Y, >0, or

2(z—1)*+ {z(?)z—-l) (z—l)+%§z—§}+ { 325 — 2z2+%z—%g-} +22>0
and
Y,,—Y1=(n-—1)[(122+n+ 1)z(z—1)2+(n+1){z(3z—l)(z—1)+%§z—§}

g
—|—3z3—-2z2+l§z ——Z]
PP

=(n— 1)[(7z2+n)z(z—1)2—|-'n{z(3z— 1)(z— 1)—|—'71f—?z——§} -2 +Y1]

Here n=or >2. Hence, if p31

Y,—Y.5(n—1)[11224+ 1624+ 4+Y,]

and Y, is positive. Hence Y,>Y, Tt is therefore only needful to determine the
condition of stability when n=1, which is given above. It is

18, 2 97
823 —8z2+2(1 ~—>z—-«—-——;>0, L (72
+ (+P P P ( )

When p=107" this is
(z—5.2.. )(F#+42...2465...)>0
for p=107*
(5= 28)(a2 272+ 1206) > 0
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and in general when p is very small =107

2p
z=3%X103

or

2 »
wfv=10%,/3=122X 103

Coming back to the general equation of condition, it is clear that, since w®p® occurs
on the left with a positive coeflicient, whereas the highest on the right is w*p? with a
given value of #, it is possible to satisfy the condition of stability in the state of the
ring defined by «, by taking w?p sufficiently large. If then w?p be very large, the
ring would be stable up to a considerable value of @, but as the aperture increased, a
point might be reached at last where it would become unstable. These considerations
apply to any value of p. When « is very small the equation for /v becomes
(writing y=N\/v, wp/v*=7%)

ys_?_f"yz___l,*{n(n—l— (24 (n*—38n+4)}y+ 3

0ty —8) —
11,14, {(n+1)2+n—38}=0

2n
+p

One root of this is 2 ; the others are given by

y2+-1-:2_—Py—iv$~p{(n+ 1) 4+n—3}=0
which gives the roots already found in Case I, as was to be expected. The solid
ring has two periods, whereas just as a hollow begins to be formed it suddenly
possesses two additional ones, given by A=0, and A=2. It will be interesting to see
how these are introduced. To do this we must have recourse to equations (62a) and
determine the amplitudes of the inner and outer vibrations respectively corresponding
to any given value of \. '

Taking the second of the equations (62¢) and putting therein u=0, x= small, we

et
d qLAMN—n0) =M {(14p)\+ 20N —n(n+1)w?p—n(n—3)*} =0

with the value g=0. Hence M=0 unless \ is one of the roots (65). In other words,
as the hollow forms the outside vibrations are not immediately affected, but the
internal vibrations introduce two periods peculiar to themselves, one standing vibra-
tions (A=0) and another (\=2v) travelling in the direction of the cyclic motion with
velocity 2v0/n=2U/rn, where r is the radius of the outside surface.

19. In the general case

{PN4 Aah—n(np+1)vP+nAau} {(p+ p)\*— Aar—n(np— }.)vg—nAcw—n(n—I- NHu?p} |

— (N — ) (N —n*?) =0
MDCCCLXXXYV. 5 G
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~ When reduced this is the biquadratic equation

N D3N+ AN+ e=0

where

b= Aap/(1+pp)

c= — {(n*+np+ 1’2:(72,]0-[— 1)p)u+ (n9-—’-np)v2+np(n‘-|-«1)wgp | '
—n(p-+p)Aau-t+npAav+Ata’}/(1+pp)

d=Aa{n(np+1)u*—n(np—1)*—nAa(u+v)—n(n+1)u’p}/(1+pp)

e=n¥(n*—1)u**+(n+1)(np+ l)u%gp +Aau{(np+1juv—(np—1)*
—(n+1)w'p} —APuv]/(1+pp)

Now
' =—4rAa’(kp?—k?)=—AnAathy(1—x)
Mt m ya—
V= St — Sratg — vAU(1—1)
—— M A
8mwa’k,®  8wa’kyx
therefore
v=xu—sAa(l—x)
or
Ag=—2 (eu—)
therefore
Aa__ 2, ¥
v lezu+u
v__m kP m

v A BT a(u

W__Hs

vt
If then M/v=y, the equation for y is
v 4+ b3+ ey’ + dy+e=0

where now (writing u'/(p+p'); &e. =p/, &e.)
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e WP )
T (- a)(1+pp)

c=— {(n2+np+n(hp—|— 1)p) 4;~§+n2—np+%p(n+ 1)ppg”

' ptp 2%10 ’2} 1
+2nx(1 w)m'u H'+(1—.)3)2 1+pp

d=(1—_@%@{(n10—1)—("?+1)’%+(n+1)ﬂzzp—1—_%<1+&>}

Zz

=l —1>"1+<n+1><np+1>"1 — i (p+ 1) = npt1

—(n+ 1)utp} ;{‘1&;}2]

The general investigation of the question of stability would be very laborious, but
it may be useful to put down the values of the coefficients when the aperture becomes
very large, or =1. They are

b=—np’
/ n
= —n(n+1)p22—(n2+;>p,1

i ' L (74
d=—5“{(”+1)#221’_1’«1(‘1"‘#1)"‘2}v 74

e=n3,u.1{(n+ 1)/*‘1/“'22—%.':i (14 m) }

-/

In which
pt+p'=1

20. Pulsations.—Let the pulsations be given by
k=k(1+¢) k=ky(1+7)
Then since the volume of the core remains unaltered
k2é=kyy
Since the stream function is now many-valued, it will be advisable to use the

potential function for the part of the motion due to this: denoting it by ¢, it is of
the form

$=+/C—c¢{AP+BQ,}
5¢a¢ 2
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where A and B are constants determined by the equation

Z(I) 2 = vel. inwards at the two surfaces
2w dn
dn dn, du
“du dk T du (f and 77)
Hence
op__
ou— (C— 6)25'— —4002sz
Now
° S P, . dQ
ai‘om—(APﬁBQo)h/(c ){Adﬁ;JrBﬁ}
=3./(C—0) SP'+2«L-@-J}+- B [sQ 20— on
= 5709\ ° & § Yoo 1 5% o) T
=A\/2 to the lowest order.
Hence |
A\/Zz — 4a9k12,§': '—4&2](222')7
Therefore

p=—2,/20%%/(C—c).€P, .

(75)

Again the circulation is unaltered. A term must therefore be added to ¢ ; let it be

denoted by x. Then x is of the form

X== ARABI+ . . ]

The circulation of this is
_"L\/_Qz A,

But the circulation of i round the new boundary is

(45 k)2
Along the inner boundary this is
=4l { U+ U+ 10t |
=4xak,U,—8wAd’k*é by (61)
Hence since the circulation is unaltered |
—8rAdh—T A y=0

Ay=—4y/2Aath2E= — 4,/ 2A 0y

(76)
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For the pressure condition we require the stream function. Now 2my is the flux
across any diaphragm with circular boundary through the point in question. Take it
to be the annulus v=m, from u=u, to u=u, and then the portion of the tore u=wu
from v=m to v=v. We need only to find the part of ¢ due to . Now ¢ produces
no motion across the annulus. Hence

" O du ~dn/
2774}_L ou dn 2mp dv dv

or
, o
Y= —aj-v-g;i:dv
=40’k *é(m—v)

=4a3k2277‘(7r—v) e e (77)

which is many-valued, as it ought to be.
Again, we need the flow due to x. This is

. ("L oy dv dn ™ léx@ dw’
¢ —. lp v dn’ uil,;:,,du—l_. D[P ou dn” dv :Iu_udlv
1
P

ox 8x |
ov ]?):”du + j v {: P bu_lu=ud

bx] dv to lowest order.

.

")
= *
%

il

< 3
—
o=
gl

o
¢'=Aor{ 2(05__0)3 4(01_ c)%SPO}dv

{ V@)AL=1)+ 5 L)

=4APk 2 é(mr—v)=4Ak(m—0) . . . . . . . . (78)
The pressure is given by

P 1 oy du b¢ dv
&::F(t) ¢ ¢ _‘(U-I_ bk+p du'dn” bv dn)

o du\?

18y d
- <p b dn T du dn) +A/¢+ Aand "'X)

e, au U o
=F(t)— U+ Ay—p—g — U dh— 5 o b’;+A( bk+¢+>
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keeping only the most important terms. - Substituting the values already obtained
g—_-JF(t)—-%U2+ Ay
+ 20%3% E— 4 APk 2 (m—0)
+U(U42A0%)é—2UA0% ¢
+A{—20k U E4 403k 2E(m—v) + 4Aa*T Y (L—2)€}
=TF(t) =304 AY+ 4%k PLE+F U (U —2A0%) 4 4 A%k A(L—2) €

Hence along the inside

B =T A 7Lt A =21 2 o= P g

Whilst along the outside boundary

P & : U U
a{Ft—JU+ Ay 400K Tt 4a2{A2(L2— 9)a? 4 (é‘i;)z— ot Aa}klzg

, . Uy \oy oe
=a/{ 4oL ¥4 4ot e |
Remembering that the large terms have been already annulled, we get by sub-
tracting the two equations and writing & for £,°¢, &c., as before
(sz"Ll)é"l'_{Azaz(Lz_—L1)+”2—’“'2—A“(”"“)}f
' d oo
=(§ { sz +u?é }
or

{L1+(%,—1)L2}3f+{w%—(v—u)(fu+u—Aa)+A2a2(Ll—Lz)}fzO . (79)

whence (if p=d’/d). The time of pulsation is

. ‘ L(p—D+L,
2“'\/{pw"'+A%"’(Ll—-Lg)—(iy—zl&)(v+u—Aa)} coee e (80)

The numerator of this is always positive. Hence the condition for stability is that

pw?+ A2 (L, — L)+ (v —u)Aa> v* —u?
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‘When the added circulation is in the same direction as that of the core—as has
been supposed throughout, v >wu. o
If there are no added circulations, =0, w=v, and

v=—%Aa<1—%§>=—%Aa(l—w)

and the condition of stability is

21log 1/x
P>1+_— (1—z)®

-

The maximum value of the right hand member is when

1+2  2logz
z(1 —x)2+(1 —w)3
or ,
1—a?+2x log =0

whence x=1, which makes the condition become
p>0.
Now # is always <1, and since p is a,IWays positive, the condition is satisfied.

In general
Uy’ Heo

T 2mak,  8watk,?

p=tat¥

8maky?
t

8mak,?

U=

Also
p'=— 4w Aa’(k—k,?)

Hence condition of stability is that
) ’ , k.2 , kg , ko? 2
#22P><m+.u —m,;fa)(mﬂb Tt 2e ]czzi % 2> 4# ( > log i,

o e e e e R e e

When « is sma]l the right hand side is evidently negatlve and the condition " is
satlsﬁed When w=1 the right hand member is 0.
Consequently

pa'p >0



780 PROFESSOR W. M. HICKS ON THE THEORY OF VORTEX RINGS.

In general

wtomei{1= 2y o 225

all these terms are negative. Hence the core is always stable for pulsations.
Substituting for u, v, w the time of pulsation is given by

' pLo+iloglle
oot/ (R e ) -
For a coreless ring this is
20202
!
which agrees with the value obtained in [I. § 14].‘

[Added April 3, 1886.—The cubic giving the times of vibration of a hollow ring
of the same density as the fluid, and with no extra circulations, can be solved. The
equation is

SRR T YA

Y= A—zp [IT12\ v)”

The roots are

== 4t A/ () - )

. . . . 4r?r® . . .
The corresponding times of vibration are Z; , where 7 is the radius of the section. ]

ERrRATA IN PAPER ON “ STEADY MOTION AND SMALL VIBRATIONS OF A HorLrow
Vorrex,” PHIL TrANS., VOL. 175.

1. Page 188, line 6 from bottom, the coefficient of £#* in U is wrong, since the full
value of i, was not substituted.

2. Page 191, line 4, for 1—2&* read 142k

3. » 6, for (L—%) read L—4%.

4. ,, ., 7, the coefficient of £* is $3(L—%)>.

‘5. In§ 13 the effect of the surface velocity in modifiying the normal motion of the

wave motion has been neglected. The time of vibration there given is
therefore wrong. The correct value is given in the foregoing discussion in
§17.



